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An overview ...

This talk is about using tools from category theory to reason
about communication:

1 What is category theory?

Motivation, definitions, & history.

Current theory & applications.

Useful tools: diagrammatic & otherwise

2 Why might it be useful for communication?

Graphical descriptions of protocols & communication.

Reasoning as diagram manipulation.

‘Category theory for communication’, not vice versa!
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Category theory – a broad overview

Category Theory – the original motivation
A formalism for reasoning about the ‘large-scale’ properties of
mathematical structures.

We might consider the ‘category’ of all groups, or all rings, or
even all sets, etc., and study their properties and relationships
with each other.

A category consist of objects and arrows :

Objects All mathematical structures of a certain kind.

Arrows Structure-preserving mappings between objects.

Composition Arrows may be composed ...
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Beyond topology: the spread of category theory
Why should we be interested?

More recently, category theory has been used to model information
flow in :

Formal Logic & Deduction

Quantum algorithms & protocols

Theoretical & practical computer science,

Linguistics & natural language processing,

Cognitive science & psychology.

Why – what is the appeal?

These often use very simple tools developed for use within
category theory, rather than the actual theory itself.
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There’s something about category theory ...

Diagrammatic reasoning

Category theory frequently expresses equations as pictures.

Algebraic manipulations are replaced by diagram-chasing.

Our simple aims :

1 Express protocols / communication generally using such
graphical tools,

2 Use ‘diagram-chasing’ to reason about them.
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The definition ...

A category C consists of a class of objects, ObpCq and a set of
arrows CpA,Bq between any two objects.

Matching arrows can be composed

A f //

gf ��

B

g
��

C

Composition is associative

hpgf q “ phgqf

There is an identity 1A at each object A
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These are the tools we are looking for ...

Identities and equations are traditionally expressed graphically.

A diagram in the category Set

Z x ÞÑx2
//

x ÞÑabspxq

��

N

n ÞÑn pmod 2q

��
N

n ÞÑn pmod 2q
//

n ÞÑn2

99

t0,1u

A diagram commutes when all paths with the same
source / target describe the same arrow.
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A passing observation!
The word problem for groups / monoids is a special case of
deciding commutativity of diagrams.

Some simple arithmetic bijections ...

Xpnq “

$

’

’

&

’

’

%

n n pmod 2q “ 0
2n ´ 1 n pmod 4q “ 1
n ` 2 n pmod 8q “ 3
n´1

2 n pmod 8q “ 7

Ypnq “

$

’

’

&

’

’

%

2n n pmod 4q “ 0
n ` 2 n pmod 8q “ 2
n`1

2 n pmod 8q “ 6
n n pmod 2q “ 1

Zpnq “

$

’

’

&

’

’

%

4n n pmod 2q “ 0
n ` 2 n pmod 4q “ 1
n`1

2 n pmod 8q “ 3
n´3

4 n pmod 8q “ 7

Tpnq “

$

&

%

2n n pmod 2q “ 0
n ` 1 n pmod 4q “ 1
n´1

2 n pmod 4q “ 3

We may prove this diagram commutes :

N
Y // N N

Too

N

T

OO

N
X

oo

Z

OO

T

??

but how easily can we decide commutativity for arbitrary diagrams
over tX ,Y ,Z ,T u ?
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A simple aim!

We wish to use a single diagram to model

Underlying algebra

Knowledge of participants

Information flow

The aims :
1 Make things clearer by drawing them as pictures!

2 Interpret commutativity / failure of commutativity in
terms of communication.

3 Develop tools for (graphical) reasoning about
communication.
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Illustration by example

Commuting Action Key Exchange (CAKE)

A general prescription for key exchange protocols.

Introduced in 2004 by V. Shpilrain & G. Zapata

Includes many interesting protocols as special cases

We will look at the monoid-theoretic version:

Example 3, Section 3 of Combinatorial Group Theory and

Public Key Cryptography S.-Z. (2004).
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CAKE – sharing protocol
Alice and Bob will come to share a secret element of a monoid M.

1 Alice and Bob both have large key pools A,B ĎM that satisfy

ab “ ba @ a P A, b P B.

2 A fixed public root element γ PM is chosen.

3 Alice chooses her private key, pα1, α2q P Aˆ A, and publicly
broadcasts α1γα2 PM

4 Bob chooses his private key,pβ1, β2q P B ˆ B, and publicly
broadcasts β1γβ2 PM.

5 Alice computes α1β1γβ2α2 and Bob computes β1α1γα2β2.

By the point-wise commutativity of A,B ĎM, these are equal, giving
Alice and Bob’s shared secret σ as

σ “ α1β1γβ2α2 “ β1α1γα2β2
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The algebra of CAKE
The required arrows are:

1 The root γ
2 Alice & Bob’s private keys, pα1, α2q and pβ1, β2q

3 Alice & Bob’s public announcements, PA and PB

4 Their shared secret σ

Expressing the required relationships as a commuting diagram :

‚

α2

ww

σ //

β2

‚

‚

β2

��

PB
//

��

‚

α1

77

‚

α2

ww

PA
// ‚

β1

^^

‚ γ // ‚

α1

77

β1

^^
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Knowns and unknowns in semigroup CAKE

In this protocol, who comes to know what?

The epistemic data:

Everybody
γ,PA,PB

Alice & Bob
σ

Alice
α1 , α2

Bob
β1 , β2

Nobody
α1β1 , α2β2
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Combining algebraic & epistemic data

Introducing epistemic data to diagrams

Form the subset-lattice of participants.

Label each edge in the diagram by an element of this
lattice:

‚
f ,X // ‚

X Ď tAlice,Bob,Eveu consists of participants who

know the value of f , or (more accurately)

are able to perform the operation f .
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CAKE, in summary
The Algebraic-Epistemic (A-E) diagram for semigroup-CAKE:

‚

α2,tAu

ww

σ,tA,Bu //

β2,tBu

‚

‚

β2,tBu

��

PB ,J //

��

‚

α1,tAu

77

‚

α2,tAu

ww

PA,J // ‚

β1,tBu

^^

‚ γ,J // ‚

α1,tAu

77

β1,tBu

^^

What is and is not shown!

This diagram summarises the ‘final state of affairs’ : who ends up
knowing what. We are interested in deducing implicit information such
as ordering of events, communication between participants, etc.
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Commuting diagrams??

Treating 2tA,B,Eu,X as a monoid:

Question: Is this diagram for CAKE a commuting diagram

over the product category Mˆ 2tA,B,Eu ?

Answer: No!

Turning a bug into a feature: The reasons why / points at
which it fails to commute are highly significant.

1 Announcements / information sharing by participants.

2 Different routes to calculating the same value.
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Failure of commutativity & public announcements

Diagram 1 commutes, Diagram 2 is from CAKE.

‚

β2,tBu
��

β1γβ2,tBu //

Diagram 1

‚ ‚

β2,tBu
��

β1γβ2,J //

Diagram 2

‚

‚
γ,J

// ‚

β1,tBu

OO

‚
γ,J

// ‚

β1,tBu

OO

1 In diagram 1, Bob computes β2γβ1.
2 In diagram 2, Bob computes β2γβ1,

and announces the result.
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Public announcements as inequalities

The points at which announcements have been made appear as
inequalities:

‚

β2,tBu

��

β1γβ2,J // ‚

ď

KS

‚
γ,tA,B,Eu

// ‚

β1,tBu

OO

From a category-theory viewpoint ...

Public announcements lead to failure of commutativity.
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The other way commutativity fails :

In another sub-diagram of CAKE, we have failure of commutativity
without announcements :

‚

α2,tAu

ww

σ,tA,Bu //

β2,tBu

‚

‚ PB ,J //

��

‚

α1,tAu

77

‚ PA,J // ‚

β1,tBu

^^

Here, the non-trivial orderings

pα1, tAuqpPB,Jqpα2, tAuq ă pσ, tA,Buq

pβ1, tBupPA,Jqpβ2, tBuq ă pσ, tA,Buq

arise because Alice and Bob take distinct routes to calculating the
shared secret.
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A simple definition ...
A diagram D over an order-enriched category is the information
flow ordered (IFO) when:

1 The underlying digraph is acycylic.

2 For any edge e and path p “ pk . . . tV ,W u with the same source
and target node, the label on p is ď the label on e.
We draw this diagrammatically as a “2-cell”:

. . .

óď gn

''X
f

//

g1

77

Y

(Terminology from 2-category theory ... ) Algebraically,

gngn´1 . . . g1 ď f
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Interpreting the edge-path condition

We claim this as a generic ‘correctness criterion’ for A-E diagrams.

If it fails, then either:

1 We have failed to account for the results of some
announcement,

2 We have missed some route to calculating a secret value,

This is about information flow: nothing at all to do with the difficult of solving problems!
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The IFO condition: who knows what?

Consider a fragment of the A-E diagram for some protocol:

‚
a2,R2 // . . .

an´1,Rn´1 // ‚

an,Rn
��

H

a1,R1

OO

b,Q
// K

The IFO condition states that

b “ an . . . a1 and
n

č

j“1

Rj Ď Q

Quite simply:

Every individual x P
Şn

j“1 Rj knows every operation tajuj“1..n

and therefore also knows their composite an . . . a1.
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No participant left behind

Consider a fragment of an A-E diagram for some protocol with a
single edge and multiple paths from node H to node K .

H b,Q //

a1,R1

��

a2,R2

!!an,Rn ++ K

...

The IFO condition states that Rj Ď Q for all j “ 1..n.

Again, a simple interpretation:

The members of R1,R2, . . . ,Rn are all able to calculate (perform) b,
albeit in different ways. Therefore, the set of participants who can
perform b must contain each Rj .
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Other forms of key-exchange :

Tripartite Diffie-Hellman
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A familiar story

Three participants tAlice,Bob,Carolu wish to communicate
privately, using Diffie-Hellman key exchange.

Using their private keys a,b, c P Zp, they may either :

1 produce a single shared secret, gabc “ gbca “ gcab

2 produce a distinct shared secret for each pair:

Alice - Bob gab “ gba

Bob - Carol gbc “ gcb

Carol - Alice gca “ gac

These give two very distinct A-E diagrams over the same
category.
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The underlying category

The action takes place in a small subcategory of Set:

Objects: Zp and t˚u

Arrows:

1 modular exponentiation p qx : Zp Ñ Zp, for all x “ 0 . . . p ´ 1

2 selecting an element rxs : t‹u Ñ Zp, where rxsp‹q “ x P Zp
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Constructing a single shared secret (I)

The basic identity is ppp qaqbqc “ ppp qbqcqa “ ppp qcqaqb

Zp

p qc

��

Zp

p qb

��

Zp

p qb

>>

p qc

''

p qaoo

Zp

p qa

~~

Zp

p qa

��

Zp p qc // Zp

Zp

p qb

gg
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Constructing a single shared secret (II)
We require these equalities applied to the root g P Zp.

Zp

p q
c

��

Zp

p q
b

��

Zp

p q
b

EE

p q
c

''

p q
a

oo

Zp

p q
a

��

t˚u

rgabcs

��

rgs

OO

Zp

p q
a

~~
Zp p q

c // Zp

Zp

p q
b

gg
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Constructing a single shared secret (III)

The elements ga,gb,gc ,gab,gbc ,gca are all announced:

Zp

p qc

��

Zp

p qb

��

Zp

p qb
>>

p qc

))

p qaoo

Zp

p qa

��

t˚u

rgabcs

��

rgs

OO

rgas

bb

rgabs

||

rgbs

GG

rgbcs

&&

rgcs

55

rgcas

��

Zp

p qa
xx

Zp p qc // Zp

Zp

p qb

ii
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Constructing a single shared secret (IV)
Adding in the ‘who-knows-what’ data, we get the A-E diagram :

Zp

p q
c ,tCu

��

Zp

p q
b,tBu

��

Zp

p q
b,tBu

>>

p q
c ,tCu
))

p q
a,tAuoo

Zp

p q
a,tAu

��

t˚u

rgabcs,tA,B,Cu

��

rgs,J

OO

rgas,tA,B,Eu

^^

rgabs,tB,C,Eu

��

rgbs,tB,C,Eu

II

rgbcs,tC,A,Eu

&&

rgcs,tC,A,Eu

99

rgcas,tA,B,Eu

��

Zp

p q
a,tAu~~

Zp
p q

c ,tCu
// Zp

Zp

p q
b,tBu

ii
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Constructing three distinct shared secrets (I)

Going through the same procedure for the case of three distinct
shared secrets, we get the (commuting) diagram describing the
algebra :

Zp Zp

p qc

��

p qaoo

Zp

p qc

��

p qb
88

Zp

p qb
88

p qc

��

p qaoo

t˚u

rgabs

OO

rgcas

xx

rgbcs //

g

CC

rgas

[[

rgcs

&&

rgbs

??

Zp

Zp Zp
p qa

oo
p qb

88
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Constructing three distinct shared secrets (II)

Adding in the epistemic information, we get the A-E diagram

Zp Zp

p qc ,tCu

��

p qa,tAuoo

Zp

p qc ,tCu

��

p qb,tBu
88

Zp

p qb,tBu
88

p qc ,tCu

��

p qa,tAuoo

t˚u

rgabs,tA,Bu

OO

rgcas,tC,Au

xx

rgbcs,tB,Cu//

g,J

CC

rgas,J

[[

rgcs,J

&&

rgbs,J

??

Zp

Zp Zp
p qa,tAu

oo
p qb,tBu

88
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Is there any advantage to this ?

Drawing pictures of protocols may be fun but ... what can we actually
do?

Simple diagram-chasing gives us a systematic route to answering
questions such as :

Can any additional information be announced without
compromising the protocol?

What happens when Eve discovers (say) Bob’s secret key?

Are these two approaches equivalent?

(All already thoroughly understood – we are testing the formalism by
asking questions where we already know the answer.)
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Can we go further??

Drawing diagrams gives a visual representation of

algebraic relationships, epistemic knowledge,

and information flow.

We can use standard ‘diagram-chasing’ techniques to

answer questions about information flow.

They are also convenient for dealing with partial information.
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Deductions from partial information

Consider the situation where we have partial information about (for
example) which communications have taken place.

Representing as much as we know, diagramatically, we have arrived
at:

‚
c,tX ,Yu

��
‚

b,tW ,Xu
??

‚

d,tY ,Zu
��

‚

a,tV ,Wu

OO

dcba,J
// ‚

Can we deduce the possible routes by which the composite dcba
became public knowledge?

— as a starting point, no single individual could have announced this
without assistance!
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Unambiguous diagrams?

A class of diagrams where announcements are unambiguous :

An A-E diagram is D is triangulated when every non-identity
2-cell is decomposed into composites of identity two-cells, and
non-identity two-cells consisting of three edges.

‚ //

�#
‚

‚

OO ??

We wish to consider the possible ways in which that a given
diagram is a subdiagram of a triangulated IFO diagram.
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Different options (I)

D1 ‚
b,tW ,Xu// ‚

c,tX ,Yu//

dc,J

��

‚

d,tY ,Zu

��

‚

c,tX ,Yu

��

D2

‚

b,tW ,Xu
@@

cb,J // ‚

d,tY ,Zu
��

‚

a,tV ,Wu

OO

dcba,J
//

ba,J

GG

‚ ‚

a,tV ,Wu

OO

dcba,J
// ‚

Diagram D1 is triangulated. W has publicly announced ba and Z
has publicly announced dc; any participant may now compute
dcba.

Diagram D2 is still not triangulated; there remains ambiguity
about how dcba came to be public knowledge.
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Different options (II)

Diagram D2 may be triangulated in two different ways :

D3 ‚

c,tX ,Yu

��

‚

c,tX ,Yu

��

D4

‚

b,tW ,Xu
@@

cb,J // ‚

d,tY ,Zu
��

‚

b,tW ,Xu
@@

cb,J //

dcb,J

''

‚

d,tY ,Zu
��

‚

a,tV ,Wu

OO

dcba,J
//

cba,J

77

‚ ‚

a,tV ,Wu

OO

dcba,J
// ‚

In diagram D3, either V or W has announced cba, then either Y
or Z has announced dcba.

In diagram D4, either Y or Z has announced dcb followed by
either U or V announcing dcba.
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Combinatorics vs. Common Sense

Elementary combinatorics (& a bit of recursion) will allow us to
give all IFO triangulations of a given diagram.

— what can we conclude from these?

Some caution is needed!
We derive some potential scenarios for information flow.

Bear in mind our own assumptions.
1 Are we aware of all participants?
2 Is our understanding of their knowledge accurate?
3 Are there other ways to calculate information that we have

not accounted for?
4 . . .
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